
MATLAB MATH

Cleve Moler
moler@mathworks.com
The MathWorks Inc.
24 Prime Park Way
Natick, MA 01760-1500
USA

Copyright 1984 - 1997 by The MathWorks, Inc.

2MATLAB MATH

MATLAB MATH
Floating point numbers
Matrix factorizations
Ordinary differential equations
Zero finding
Fourier transforms
Random numbers
Sparse matrices
Symbolic computation

Copyright 1984 - 1997 by The MathWorks, Inc.

3MATLAB MATH

TAs

Penny Anderson
Mary Ann Branch

Copyright 1984 - 1997 by The MathWorks, Inc.

4MATLAB MATH

Important Note

These PowerPoint slides are NOT self contained.
Run MATLAB at the same time and enter anything

you see in blue.

Copyright 1984 - 1997 by The MathWorks, Inc.

5MATLAB MATH

Questions

Please interrupt and ask questions.

“People who ask dumb questions are doing
a public service”

-- Prof. Marc Kac

Copyright 1984 - 1997 by The MathWorks, Inc.

6MATLAB MATH

Floating Point Numbers
ANSI / IEEE Standard 754, double precision

x = ± (1+f)·2e

f = d1/2 + … + d52/252, dk = 0,1
-1022 <= e <= 1023

Roundoff: eps = 2-52

Underflow: realmin = 2-1022

Overflow: realmax = (2-eps) ·21023

Copyright 1984 - 1997 by The MathWorks, Inc.

7MATLAB MATH

Floating Point Numbers

>> format hex

>> t = 1/10

= 10-1(1.0…)10

= 2-4(1.10011001100110011001…)2

≈ 2-4(1.999999999999a)16
t =

3fb999999999999a

Copyright 1984 - 1997 by The MathWorks, Inc.

8MATLAB MATH

Floating Point Numbers
>> 1.0 - 0.8 - 0.2

>> x = [1.0 -0.8 -0.2]’

>> format long, x

>> sum(x)

>> format hex, x

>> X = sym(x,’e’)

>> sum(X)

Copyright 1984 - 1997 by The MathWorks, Inc.

9MATLAB MATH

Exercise

First, do the following computation by hand.
Then, use MATLAB. Why do the results differ?
Where are the roundoff errors?
>> a = 4/3

>> b = a - 1

>> c = 3*b

>> e = 1 - c

Copyright 1984 - 1997 by The MathWorks, Inc.

10MATLAB MATH

Test matrices

Magic squares magic(n)

Hilbert matrices hilb(n)

Pascal matrices pascal(n)

Random matrices rand(n), randn(n)

Higham’s gallery help gallery

help private/xxx

Copyright 1984 - 1997 by The MathWorks, Inc.

11MATLAB MATH

Exercise
Choose some test matrices for later use.

Copyright 1984 - 1997 by The MathWorks, Inc.

12MATLAB MATH

Matrix factorizations

Triangular
lu, chol

Orthogonal
qr

Eigenvalue
eig, qz

Singular value
svd

Copyright 1984 - 1997 by The MathWorks, Inc.

13MATLAB MATH

Triangular factorization

A = LU
L permuted unit lower triangular
U upper triangular

Copyright 1984 - 1997 by The MathWorks, Inc.

14MATLAB MATH

Triangular factorization

» A = test matrix
» [L,U] = lu(A)

Copyright 1984 - 1997 by The MathWorks, Inc.

15MATLAB MATH

Exercise
Find the LU factorization of your test matrices.
Observe the structure of L and U.
Verify that LU is close to A.
>> [L,U] = lu(A)

>> L*U - A

Copyright 1984 - 1997 by The MathWorks, Inc.

16MATLAB MATH

Cholesky factorization

If A is symmetric and positive definite
A = RT R
R upper triangular

Copyright 1984 - 1997 by The MathWorks, Inc.

17MATLAB MATH

Cholesky factorization

» A = spd test matrix;

» R = chol(A);

Copyright 1984 - 1997 by The MathWorks, Inc.

18MATLAB MATH

Exercise
Find a symmetric, positive definite test matrix.
Compute its Cholesky factor.
Find a symmetric, indefinite test matrix.
Try to compute its Cholesky factor.

>> help chol

>> [R,p] = chol(A)

Copyright 1984 - 1997 by The MathWorks, Inc.

19MATLAB MATH

Orthogonal factorization

A = QR
Q orthogonal
R upper triangular

Copyright 1984 - 1997 by The MathWorks, Inc.

20MATLAB MATH

Orthogonal factorization

» A = rectangular test matrix
» [Q,R] = qr(A)

Copyright 1984 - 1997 by The MathWorks, Inc.

21MATLAB MATH

Orthogonal factorization

Full QR

Economy-sized QR

Copyright 1984 - 1997 by The MathWorks, Inc.

22MATLAB MATH

Exercise
Find the QR factorization of your test matrices.
Observe the structure of Q and R.
Verify that QR is close to A.
Verify that Q is close to orthogonal.
>> [Q,R] = qr(A)

>> Q*R - A

>> I = eye(size(A))

>> Q'*Q - I

Copyright 1984 - 1997 by The MathWorks, Inc.

23MATLAB MATH

Backslash
Problem:

Solve Ax = b
MATLAB:

x = A\b

Algorithm:
Triangular A -- solve directly.
Square A -- use Cholesky or LU.
Rectangular A -- use QR (least squares).

Copyright 1984 - 1997 by The MathWorks, Inc.

24MATLAB MATH

Existence and uniqueness
Problem:

Solve Ax = b
Existence:

b is in the column space of A.
Uniqueness:

Ax = 0 has no nonzero solutions.

Copyright 1984 - 1997 by The MathWorks, Inc.

25MATLAB MATH

Existence and uniqueness
Example: 1-by-1

Solve ax = b
Solution

x = a\b
What if b is zero?
What if a is zero?
What if both are zero?

Copyright 1984 - 1997 by The MathWorks, Inc.

26MATLAB MATH

Moler’s rules

It’s very hard to compute things that don’t exist.

It’s also hard to compute things that aren’t unique.

Copyright 1984 - 1997 by The MathWorks, Inc.

27MATLAB MATH

Condition number
Problem:

Change A to A + δA.
How much does x = A\b change?

Answer (approximately):
||δx||/||x|| ≤ κ(A) ||δA||/||A||

κ(A) is the condition number of A.
Computed by cond(A)
Estimated by condest(A)

Copyright 1984 - 1997 by The MathWorks, Inc.

28MATLAB MATH

Condition number
Rule of thumb:
A matrix is singular to working precision if

κ(A) > 1/eps ≈ 1015

Copyright 1984 - 1997 by The MathWorks, Inc.

29MATLAB MATH

Exercise
Check out

A\b

cond(A)

condest(A)

Copyright 1984 - 1997 by The MathWorks, Inc.

30MATLAB MATH

Eigenvalue decomposition

A = X Λ X -1

X eigenvectors
Λ diagonal, eigenvalues

Copyright 1984 - 1997 by The MathWorks, Inc.

31MATLAB MATH

Eigenvalue decomposition

» A = test matrix
» [V,D] = eig(A)

Copyright 1984 - 1997 by The MathWorks, Inc.

32MATLAB MATH

Exercise
Distribution of eigenvalues
>> format short e

>> e = eig(A)

>> plot(e,'o')

>> semilogy(abs(e),'o')

Copyright 1984 - 1997 by The MathWorks, Inc.

33MATLAB MATH

Alternate Exercise
Condition numbers of eigenvalues
>> help condeig

>> [V,D,s] = condeig(A)

>> cond(V)

Copyright 1984 - 1997 by The MathWorks, Inc.

34MATLAB MATH

Singular Value Decomposition

A = U Σ V T

U orthogonal
Σ diagonal, singular values
V orthogonal

Copyright 1984 - 1997 by The MathWorks, Inc.

35MATLAB MATH

Demonstration

>> eigshow

>> svdshow

Copyright 1984 - 1997 by The MathWorks, Inc.

36MATLAB MATH

Eigenvalues vs. Singular values

Eigenvalues
A maps n-dimensional space onto itself
Try to diagonalize with one change of basis
Might be complex, even when A is real
Might not exist; Jordan Canonical Form
Analyze systems of o.d.e.’s

Copyright 1984 - 1997 by The MathWorks, Inc.

37MATLAB MATH

Eigenvalues vs. Singular values
Singular values

A maps n-space onto m-space
Separate change of basis in domain and range
Always real when A is real
Always exists
Transforming matrices are orthogonal
Analyze systems of simultaneous linear eqns

Copyright 1984 - 1997 by The MathWorks, Inc.

38MATLAB MATH

Eigenvalues vs. Singular values
If A is square, symmetric and positive
definite, then the eigenvalue decomposition
and the singular value decomposition are the
same.

Copyright 1984 - 1997 by The MathWorks, Inc.

39MATLAB MATH

Exercise
Compare
>> [X,D] = eig(A)

and
>> [U,S,V] = svd(A)

for various matrices, including
>> A = pascal(6)

>> A = gallery(3)

>> A = gallery(5)

>> A = rosser

Copyright 1984 - 1997 by The MathWorks, Inc.

40MATLAB MATH

Ordinary Differential Equations

One step methods (Runge-Kutta)

Match Taylor series through specified order

Single fixed formula

Vary only step size

Several function evaluations per step

Minimal memory requirements

Copyright 1984 - 1997 by The MathWorks, Inc.

41MATLAB MATH

Ordinary Differential Equations

Multistep methods (Predictor-corrector)

Polynomial approximations of various orders

Family of formulas

Vary order and step size each step

Fewer function evaluations per step

More memory required

Copyright 1984 - 1997 by The MathWorks, Inc.

42MATLAB MATH

Ordinary Differential Equations
Explicit methods

Explicit formula for each component
Appropriate for nonstiff equations

Implicit methods
Solve system of simultaneous equations at
each time step
Involves the Jacobian, ∂F/∂y
Appropriate for stiff equations

Copyright 1984 - 1997 by The MathWorks, Inc.

43MATLAB MATH

Stiff problems
Solutions can change on a time scale that

is very short compared to the interval of
integration, but the solution of interest
changes on a much longer time scale.

Practical definition:
ode45 uses too many time steps

Copyright 1984 - 1997 by The MathWorks, Inc.

44MATLAB MATH

Ordinary Differential Equations

Modern methods

Estimate error

Compute appropriate step size

Provide interpolants which allow the solution
to be computed anywhere

Provide zero finding and event handling

Copyright 1984 - 1997 by The MathWorks, Inc.

45MATLAB MATH

Ordinary Differential Equations

Nonstiff
ode23

ode45

ode113

Stiff
ode23s

ode15s

Copyright 1984 - 1997 by The MathWorks, Inc.

46MATLAB MATH

ODE Suite Methods
ode45 Dormand-Prince formula
(4,5) Runge-Kutta triple, order 5
ode23 Bogacki-Shampine formula
(2,3) Runge-Kutta triple, order 3
ode113 Adams-Bashforth-Moulton, PECE
based on ODE/STEP, INTRP, orders 1-13
ode15s Numerical Differentiation Formulas
NDF family of Klopfenstein-Shampine, orders 1-5
ode23s modified Rosenbrock (2,3) triple
W-method of Shampine-Reichelt, order 2

Copyright 1984 - 1997 by The MathWorks, Inc.

47MATLAB MATH

Time Step Selection

ode45, ode23, ode113

Choose steps small enough to resolve the
fastest possible behavior

ode15s, ode23s

Choose steps just small enough to resolve
the actual behavior

Copyright 1984 - 1997 by The MathWorks, Inc.

48MATLAB MATH

Nonstiff ODE methods
The best choice is likely to be

ode45 for most problems

ode23 if you want less accuracy
or if F(t,y) is not smooth

ode113 if you want much more accuracy
or if F(t,y) is very expensive

Copyright 1984 - 1997 by The MathWorks, Inc.

49MATLAB MATH

Stiff ODE methods
The best choice is likely to be

ode15s for most problems

ode23s if you want less accuracy
or if F(t,y) is not smooth
or if ∂F/∂y is very cheap

Copyright 1984 - 1997 by The MathWorks, Inc.

50MATLAB MATH

Using the stiff solvers
You can use ode15s and ode23s exactly like

the codes for non-stiff problems, since
∂F/∂y is generated numerically by default.

But you may be able to speed up the
computation greatly:

vectorize the evaluation of F(t,y)
provide the sparsity pattern of ∂F/∂y
evaluation of ∂F/∂y for large problems
requires sparse matrix technology.

Copyright 1984 - 1997 by The MathWorks, Inc.

51MATLAB MATH

Flame propagation example
y' = y2(1-y)
y(0) = 0.01
0 <= t <= 200

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

Copyright 1984 - 1997 by The MathWorks, Inc.

52MATLAB MATH

Exercise
Try different ode solvers. Vary parameters.
» flame = inline('y.^2.*(1-y)','t','y')

» y0 = 1.e-4

» tspan = [0 2/y0]

» opts = odeset('reltol',1.e-5, ...

'abstol',1.e-4)

» ode23s(flame,tspan,y0,opts)

» zoom on

Copyright 1984 - 1997 by The MathWorks, Inc.

53MATLAB MATH

Zero finding

Polynomials

roots

Nonlinear functions

fzero

Minimization

fmin

Copyright 1984 - 1997 by The MathWorks, Inc.

54MATLAB MATH

Companion matrix

The roots of the polynomial of degree n
p(x) = xn + c1xn-1 + . . . + cn

are the eigenvalues of the n-by-n matrix

-c1 -c2 . . . -cn-1 -cn
1 0 . . . 0 0
0 1 . . . 0 0

.
.

0 0 . . . 1 0

Copyright 1984 - 1997 by The MathWorks, Inc.

55MATLAB MATH

Polynomial roots

» dbtype roots

» dbstop 39 roots

» p = poly(1:5)

» roots(p)

39 r = [r;eig(a)];

K» a

K» dbcont

Copyright 1984 - 1997 by The MathWorks, Inc.

56MATLAB MATH

Multiple roots

What are the roots of
(x - a)m = 0 ?

What are the roots of
(x - a)m = eps ?

» p = poly(ones(1,16))

» z = roots(p)

» plot(z,'o')

» axis equal

Copyright 1984 - 1997 by The MathWorks, Inc.

57MATLAB MATH

Exercise

J. H. Wilkinson’s famous example
» p = poly(1:20)

» delta = 2^(-23)

» p(2) = -210 - delta

» z = roots(p)

» plot(z,'o')

Make delta small enough to get real roots.
Which roots are most sensitive?

Copyright 1984 - 1997 by The MathWorks, Inc.

58MATLAB MATH

Zeros of scalar functions

fzero

Copyright 1984 - 1997 by The MathWorks, Inc.

59MATLAB MATH

Fourier Transforms

Transform matrix

dftmtx

Fast Fourier Transform

fft, ifft, fft2, ifft2

Convolution

conv

Copyright 1984 - 1997 by The MathWorks, Inc.

60MATLAB MATH

Finite Fourier Transform

» n = 8

» omega = exp(-2*pi*i/n)

» [k,j] = meshgrid(0:n-1)

» F = omega.^(k.*j)

» dftmtx(8)

» x = randn(n,1)

» F*x

» fft(x)

Copyright 1984 - 1997 by The MathWorks, Inc.

61MATLAB MATH

Fast Finite Fourier Transform

» I = eye(n,n)

» P = I(:,[1:2:n 2:2:n])

» H = dftmtx(n/2)

» D = diag(omega.^(0:n/2-1))

Theorem:
» F == [H D*H; H -D*H]*P'

Copyright 1984 - 1997 by The MathWorks, Inc.

62MATLAB MATH

Fast Finite Fourier Transform
function y = ffft(x)

%FFFT Fast Finite Fourier Transform.

% FFFT(X) computes the same Fourier transform as FFT(X).

% The code uses a recursive divide and conquer algorithm

% for even order and matrix-vector multiplication for odd

% order. If length(X) is n*m where n is even and m is
odd,

% the computational complexity of this approach is

% O(n*log(n))*O(m^2).

n = length(x);

omega = exp(-2*pi*i/n);

Copyright 1984 - 1997 by The MathWorks, Inc.

63MATLAB MATH

Fast Finite Fourier Transform
if rem(n,2) == 0

% Recursive divide and conquer

k = (0:n/2-1)';

w = omega .^ k;

u = ffft(x(1:2:n-1));

v = w.*ffft(x(2:2:n));

y = [u+v; u-v];

else

% The Fourier matrix.

j = 0:n-1;

k = j';

F = omega .^ (k*j);

y = F*x;

end

Copyright 1984 - 1997 by The MathWorks, Inc.

64MATLAB MATH

Random numbers

Uniform distribution

rand

Normal distribution

randn

Other distributions

help stats

Copyright 1984 - 1997 by The MathWorks, Inc.

65MATLAB MATH

Sparse Matrices

Creating sparse matrices
sparse, spdiags

Linear equations
\, symrcm, symmmd, colmmd

Iterative methods
pcm, minres, bicgstab, …

Eigenvalues
eigs, svds

Copyright 1984 - 1997 by The MathWorks, Inc.

66MATLAB MATH

Symbolic Computation

Computer algebra systems
Maple V, ...

Symbolic objects
sym, syms

Calculus example
Matrix example
Function calculator

funtool

	MATLAB MATH
	TAs
	Important Note
	Questions
	Floating Point Numbers
	Floating Point Numbers
	Floating Point Numbers
	Exercise
	Test matrices
	Exercise
	Matrix factorizations
	Triangular factorization
	Triangular factorization
	Exercise
	Cholesky factorization
	Cholesky factorization
	Exercise
	Orthogonal factorization
	Orthogonal factorization
	Orthogonal factorization
	Exercise
	Backslash
	Existence and uniqueness
	Existence and uniqueness
	Moler’s rules
	Condition number
	Condition number
	Exercise
	Eigenvalue decomposition
	Eigenvalue decomposition
	Exercise
	Alternate Exercise
	Singular Value Decomposition
	Demonstration
	Eigenvalues vs. Singular values
	Eigenvalues vs. Singular values
	Eigenvalues vs. Singular values
	Exercise
	Ordinary Differential Equations
	Ordinary Differential Equations
	Ordinary Differential Equations
	Stiff problems
	Ordinary Differential Equations
	Ordinary Differential Equations
	ODE Suite Methods
	Time Step Selection
	Nonstiff ODE methods
	Stiff ODE methods
	Using the stiff solvers
	Flame propagation example
	Exercise
	Zero finding
	Companion matrix
	Polynomial roots
	Multiple roots
	Exercise
	Zeros of scalar functions
	Fourier Transforms
	Finite Fourier Transform
	Fast Finite Fourier Transform
	Fast Finite Fourier Transform
	Fast Finite Fourier Transform
	Random numbers
	Sparse Matrices
	Symbolic Computation

